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PREFACE

This paper 1s an attempt at an elementary presentation
of what the author considers to be the most applicable and
interesting properties of generalized inverses of matrices,
We shall pay particular attentlon to a discussion of those
properties concerned with the pseudo-inverse of a rectangu-
lar matrix. This structure was first studied by Moore, who
used the name general reciprocal, and later it was studied
by Penrose, who used the name generalizéd inverse,

The present discussion is what I deem to be the most
practical way to present this materisl with the expectation
that some of the readers of this paper will not be very well
acquainted with abstract mathematics. I should like to
apologize if all credit for work is not properly placed and
refer those interested readers to the list of references,
where practically all the material presented here is discussed
in detail.

I wish to thank all the people who were involved in the
preparation and presentation of this paper. In particular, I
should like to express my gratitude to E. R. Lancaster, who
proof-read the manuscript and made many valuable suggestions,
and to C. A. Rohde, who was kind enough to let me read his
doctoral thesis (Ref. 25), and whose suggestions were of
immeasurable aid to me in the compilation and presentation

of this material.



I. PRELIMINARIES

To begin, we shall recall some results-and definitions
from matrix theory. If n and m are natural numbers, an n x m

matrix A will be a rectangular array of real numbers
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which will be denoted by [aij]’ or Aij’ l1<i<n,1<js<m.
The transpose of A, denoted by A', will mean the m X n matrix
whose (i,J)th entry is 231 The ith row of A is the 1 x m

matrix [ail . . . aim]. The jth colum of A is the nx 1

matrix

et
Thus, the transpose A' of A is the matrix whose columns are

the rows of A. We note that for matrices A and B whose product
is defined, (AB)' = B'A', and for A and B whose sum is defined,
(A+B)' = A'4+B'. An m-row vector will mesn a 1 X m matrix,

and an m-column vector will mean an m x 1 matrix. When the
meaning is clear from the context, an m-row or column vector

will simply be called an m-vector, or vector. Note that if



x is an m-column vector, then x' is an m-row vector and vice
versa. In what follows, unless otherwise stated, we shall
always mean that x is a column vector, and we shall write x'
when we wish to refer to the corresponding row vector.

Let A, B be n x m matrices with A = [aiJ] and B = [bij].’
We define the n x m matrix A+B by (A+B)iJ = [aij+ bij]' If

A isnxm, Bis mx p, we define the n x p matrix C = AB by

m

i3 7 E 8y Pi;
k=1

The n x m matrix 6 is the matrix all of whose entries are

zeros. The n x n matrix I is the n-identity matrix [éij]

where
0if 1 #
to1ir i =g
10 . 0
Thus T = 01l . 0
n o e e
00. 1

The n x n matrix D is called a diagonal matrix, denoted by
D = diag {ai, A an} if the non-diagonel entries are

zeros, and D,, =a., 1 €1 €n.
ii i

a1 0 .. 0“1

0 as .
Thus D = diag { Bys « 0 - s an} = : .

o

The n x n matrix A is called symmetric if A = A', and




idempotent if AZ = A,

Let A be an n x m matrix, An n x n matrix B such that
BA = A is called a left identity for A, while an m x m matrix
T such that AT = A is called a right identity for A. Then x n
matrix A is called invertible or non-singular if there is an
n x n matrix B such that AB = BA = In' When such a matrix B
exists, it is unique and denoted by A"1. A™Y is called the
inverse of A, If the matrix A is not invertible, it is called
singular. A matrix P such that P! = P' is called an orthogonal,
or orthonormal matrix.

We shell need the following result which we state without
proof (See Ref. 3).
Theorem I.1l: Let A be an n X n symmetric matrix, Then there

is an orthogonal matrix P such that

PAP' =D = diag { A1, A2, .ees Ar, O, ..., O}

where the xi are non-zero scalars vwhich may or may not be
distinect.
The matrix R with s non-zero rows is said to be in row
reduced echelon form if the following are satisfied:
i) If a row is not all zero, its leading non-zero
term is 1.
ii) All of the non-zero rows are above the rows

consisting only of zeros.
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i11)  If the ith non-zero row has its leading non-zero
term in the jth column, then the leading non-
zero term in each row above row i appears in
a column to the left of colum j; for 1 <i < s
iv) If the leading non-zero term in the ith row
appears in the jth column, then the other
entries of the jth column are all zeroes.

The matrix C is said to be in column reduced echelon form
if C' is in row reduced echelon form. We may sometimes speak
of R as being row reduced or in row reduced form.

It is well-known (see Ref. 17) that any n x m matrix A
can be put into a unique row reduced form by elementary row
operations. If R i1s this row-reduced form of A, there is a
non-singular n x n matrix P such that PA = R,

Similarly, we may use elementary column operations to
obtain a column reduced form B of R. When this is done, 1t

is seen that there is a non-singular m x m matrix Q such that

(@]

Ir
PAQ = B =

0

(@]

where the O's stand for zero matrices of appropriate sizes and
r < min {m,n}.

We shall occasionally have use for so-called partitioned
matrices. These are matrices whose entries are themselves

matrices, We observe that, assuming all operations are




defined, these matrices may be handled as though the entries
were scalars, When using partitioned matrices, we may use lines

1
to separate the submatrix entries. For example, if P =F ere

P>
P1 is an ny X ng matrix, P2 is an ng X np matrix and
Q=1[Q ] QzJ where Q3 is an np x ng matrix, Q is an np x ng

matrix, then we have PQ is an (nj+ns) x (ng+ns) matrix given by

P, PQ, P;Qy
PQ -

Q1 | @] =
Fz ‘ P2y - PQp

If A is an n X n matrix, the trace of A is defined by

n

i=1

The trace has the following properties:
i) For matrices A, B such that AB and BA exist,
tr(AB) = tr(BA). Hence, tr(PAP ) = tr A,
where P is non-singular and PAP 1 exists.
ii)  tr(A+B) = tr(A) + tr(B) where A+B exists.
A finite set of vectors {xi, cees xn} is called linearly

dependent if there are n real numbers c e+3 Cos not all

n r
zero, such that E CiX, = 0.
i=1
Ir {xi}rll are not linearly dependent, they are said to be
linearly independent.
A row or column vector space V is a collection of row oxr

column vectors such that




i) x, y € VD x+yeV and
ii) xeV and ¢, a real number =P cxeV.

A subspace W of a vector space V is a subset of V which
is itself a vector space. Thus, for example, the collection
of all n-colum vectors (n is fixed) whose first ecoordinate
is zero is a subspace of the vector space consisting of all
n-column vectors,

If {xi}? is a finite collection of vectors, a vector x
is said to be a linear combination of thelvectors Xyy ooy X
if tgere are n real numbers ci, ..., <, such that
X = E‘ C, Xy The collection V of all vectors which are
lin%g% combinations of xi, ..., X forms a vector space,

V=I5 {x1, ..., xn}, called the space spanned by the vectors

X1y veey X0 A linearly independent spanning set of vectors
for a vector space V 1s called a basis for V. It cen be

proved (Ref, 17) that every vector space has a basis and that
any two bases for the same vector space have the number of
elements. In all of our discussions involving a vector space

V, we shall assume that there is a finite basis for V. We shall
say that V is finite dimensional and that the diﬁension of V,
dim V, is n, where n is the number of elements in a basis for V.

For example, let V be the set of all n-column vectors.

It is clear that the n-vectors e; = fo, ..., 0, lj’ 0, «os]!
forma basis for V, and that this basis has exactly n elements.

Now we return to an n x m matrix A. The row (column)




space of A is the vector space spanned by the rows (columns)

of A. The dimension of the row (column) space of A is
called the row (colum) ra.nk of A. It can be shown that for
any matrix, row rank A = column rank A. This common number
is called the rank of A and denoted by rk A. This shows that
for any matrix A, rk A = rk A",

If x and y are n-colum vectors, the inner or dot product,
(x,y), of x and y is the number ¢ s0 that x'y = [e]. In this
situation we may choose to identify the matrix [o] with the
real number o itself and write x'y = a.

The inner product has the following properties:

1) (x, y) = (y, x)

(X, Q’y) = ‘w(, Y) = Q’(x, Y)

1

ii)  x, y)

131)  (xy + x2. ¥) = (x1, ¥) + (%2, ¥)

(x, y1) + (x, y2)

iv)  (x, y1 + y2)
v) (x, x) 20, and (x, x) = 0= x = 0.

Here x, %1, X2, ¥, Y1, Y= are all vectors of the same
dimension, and o is a real number. Property i) is called
commutativity. Properties ii) -~ iv) characterize the inner
product as being bilinear function. Property v) is called
positive definiteness., For a vector x, the norm or magnitude
of x is the number (x, x)%. This is denoted by |lx|| and has

the following properties:

1) flxllz0eand || x || =0px =0
i) fJlex =l |=x]
111)  lx+y sz |+ v



Let A be an n x m matrix, y be a fixed n-vector, Consider the
numbers H.A.x-y” as x varies through all m-vectors. We define the

unique number iQf ”Ax-y” to’be the number ¢ such that

i) o < ||Ax-y|| for all m-vectors x.
ii) If g is any number so that g ¢ ||Ax-¥|| for all
m-vectors x, then g ¢ g,
Two vectors x and y are called orthogonal if (x, y) = O.
We write x L.y. A vector x is orthogonal to a vector space V if
for all yV, x<dey. We write x L V. Similarly, two vectors spaces
V and W are orthogonal if, for all xeV, yeW, xt7y.
We will need the following well-known results:

Theorem 1.2, If A is an n x m matrix, B an m x p matrix, then

rk AB ¢« rk A, and rk AB < rk B.

Proof: Let us first note that for any matrices A and B whose
product is defined, the rows of AB are in the row space of B, and
the columns of AB are in the column space of A.

Now, if W and V are vector spaces with W& V, then dim W  dim V,

Hence,
rk AB = row vk AB ¢ row vk B = rk B and
rk AB = col rk AB ¢ col rk A = rk A, Q.E.D.

If Ais an n x m matrix, the range of A, R(A), is the column
space of A. The null space of A, N(A), is the collection of m-vectors
x such that Ax = 0. It can be shown that

(1) dim R(A) + dim N(A) = m
Thus,

rk A + dim N(A) = m




The reason for the name of R(A) is clear since for any m-vector
x, Axe column space of A.

We say that a vector space V is the direct sum of subspaces
Wy and Wp, written Wy @ Wz, 1if every vector xeV can be written

uniquely as
X = X3 + Xz with x; € W3, xp € Wa.

If W is a subspace of V, the set -of vectors orthogonal to W is
a subspace of V called the orthogonal complement of W, denoted
by W'L . It can be proved that V = W‘W"' . If a vector space V
is the direct sum of W; and Wz, then W1 W> = {0}.

If the vector x ¢ V is written in its uniqueﬁtm X =Xy + Xp
with x5 e W, xo € W"L , then the vector x; is called the orthogonal

projection, or, more simply, the projection of x onto W. We write
x1 = proj (x; W).

Theorem I.3  Let A be mxm. Then N(A'A) = N(A), and hence dim N{A'A) =
dim N(A).
Proof: We first show that N(A'A)¢C N(A). Let x ¢ N(A'A). Then
A'Ax = Oshx'A'Ax = O=p(Ax, Ax) = O D Ax = O x ¢ N(A).
Conversely, let Ax = O, then A'Ax = 0, and hence x ¢ N(A'A). Q.E.D.

Corollary I.1. If A is nxm, then rk A

vk A'A = vk AA'.

Proof: By (1),
m=1rk(A'A) + dim N(A'A) = vk A + dim N(A) and from
Theorem I.3, rk A'A = rk A.

10




Now interchanging A end A' in this result, we obtain rk AA' =
rk A' = rk A, Q.E.D.

Let us rem&rk, that although our development is confined
to vector spaces over the real numbers, the analogous development
for complex vector spaces requires only the substitution of A¥*,
the conjugate transpose of A, for A', the ordinary transpose of

A, in every statement involving A",

11




II. GENERALIZED INVERSES

Perhaps the main application of matrix theory is the insight

it gives us when we try to analyze a system of linear equationms,

say

a X1y ¢+ . . . + 8 X =
1 1t Yn

It is well-known that this system can be rewritten as the

matrix equation Ax = y, where A = [a.i ,j]’

Xy Iy
X and y =
b Y,

In the case where A is square and non-singular, a unique solution
exists for every vector y. This is given by xo = A™? y. In the
case where A is square and singular or A is not square, the system
may have a solution, or it may not have one.
The advantages of & generalized inverse, Ag, of an arbitrary
matrix A are the following:
i) It always exists, and when the equation Ax =y
is consistent, i.e. has a solution, xp = Agy is
one such solution.
ji) If Ax = y is inconsistent, i.e. has no solution, the
methods of working with a g.i. can be used to obtain

a best approximate solution in the sense that we may



find a vector xg so that H Axy - ¥ ” is as small as
possible. That is, we may find a vector xo so that
ldmo - v Il = 2g2 | &x - 5 .

With this introduction, let us then make the

Definition II.1 Let A be an n x m matrix. An m x n matrix Ag

is called a g.i. of A if AASA = A,

Theorem II.1 - (Bose). If Aisnxm ag.i. AP of A always exists.

Proof: (Ref. 25) We know that we may row and column reduce A

to obtain the matrix B where

-
Ot

(@}
(@]

The rk A = r, and the number of zeros in each block is such that

B is n xm This is equivalent to saying that there are non-singular

nxn mxm
matrices P and Q such that

(1) PAQ = B which implies
A =P lBQ7?
It is clear that if B® is taken to be B', we have
(2) B8%B = B.
We define A® = QBgP. Then,

IV

P! Bq”t qe®pp lBQ}

P 1BE®BQ"! = PT1BQ"! = A. Q.E.D.

1

Corollary II.1. If PAQ = B where P and Q are non-singular matrices,

and B® is any g.i. of B, then QBfP is a g.i. of A,

13




Theorem II.2 If A is nxm, PAQ = B as above,‘ then every g.1. A8

of A is given by Q,BgP where B® is some g.i. of B.

Proof:  Let A® be any g.i. of A. Then,

BQ 2A%P71B = PAQQ A®P lpaq = PaABAQ = PAQ = B.

Thus Q 2AP™! is & g.i. of B, and A8 = Q(Q"2a8P"1)P. Q.E.D.

We note that in genersl Ag is not unique. In fact, if PAQ = B,

where

(=
(o]}

(o]
o1

it is easily seen that we may define

I U
BE =
v W

where U, V, W are arbitrary matrices of appropriate dimensions,
and we still have BB®B = B, Thus, in general, there may be many
g.i.'s for a matrix.

The following theorem Jjustifies the naming of a g.i.

Theorem II.3. If A is an n x n, non-singular matrix, then A® = A71

Proof: Since A is non-singular, the only left identity for A is
I . We know that AA% is a left identity for A. Thus, AA® = I,
and A® = A71 by left multiplication by A™1. Q.E.D.

We should comment here that, in general (aB)® # BEA®. Howvever,

if B and C are non-singular, then

1k




(RaC)® = 71871,

.The next theorem, due to Penrose, gives the utility of the g.i. in
solving a matrix equation.

Theorem IT.4. Let Abenxm, Bbe pxq, C benxgq,

1) The matrix equation A X B = C has a solution if and only
if there are g.1i.'s A® of A and B® of B so that AABCEEB = C.
2) If AX B=C is consistent, then we obtain the most

general solution X by choosing Ag, B8 fixed, but arbitrary g.i.'s

and setting

X = 2888 + ¥ - A®aymB®
where Y is an arbitrary m x p matrix.
Proof: 1) Suppose A X B = C has the solution Xy, then if A8
and BE are any g.1.'s of A and B,
C = AXoB = AABA X, BB®B = AASCEEB.
Conversely, if AASCBE®B = C for some A® and BE, then ABCBE is a
solution to AXB = C.
2) Suppose AXB = C is consistent, and Ag, B® are any g.i.'s

of A and B. Then the matrix

x = A%3B% + v - A% v BB

15



is a solution for eny m x p matrix Y. Conversely if Xo is any

solution, then Xp is m x p, and AXoB = C. Hence,

Xo = ABcE® 4+ x, - ABcB®

= a8cB® + x, - 282 x, BEE. Q.E.D.

Corollary II.2 If A is n x m, x and y are vectors of appropriate

dimensions, then Ax = y is consistent if and only if there is a
g.1i. A% 50 that AAgy = y. When Ax = y is consistent, the most

general solution is given by
x = ABy & (Im Y CINE:

vhere A® is any g.1i. of A, and z is an arbitrary m-vector.

We note that the general linear system
3) A1XBy + AXBp + . . . + AXB =C

may be rewritten as follows.

nan mxp pxq

Suppose }H{, X, Bk

pxq _
et 1) B = l—Bijk] =12 . .|

e

k k
where Bi is the ith colum of B .

i) X =[x .. XP], where X, is the ith colum of X.



mp X 1 XJ
iii) X* =
X
. Pd
X*
gem x 1 .
iv) ) Sl = q .
X*
, n X pm k k
vl Dy = [BliAk| e By Ak]
vi)  ¢=1c| . .| C,] where C; is the ith column of C.
C
L
vii) C*¥ =1,
c
4
Dge 0+ - O
ng X qpm
viii) H =
0 Dqk
Ir r
Then Ej Ak X Bk = C may be rewritten‘ ;ﬂHkl X*¥¥* = C¥*,
k=1 k=1

Thus (3) may be-analyzed as above.

17




III. MINIMIZATION OF SYSTEMS OF LINEAR EQUATIONS

Now that the reader has seen the preceding results, he might
wonder what happens if the system Ax = y is inconsistent. It
turns out that through the use of generalized inverses, we may
obtain vectors which are as "close" to solutions as possible in the
_o_llowing sense,

Definition III.1. A vector X is said to minimize the equation

Ax = y if

inf lax -y ||

X

lax - vl

We shall show that there is a unique vector xg of smallest
norm which minimizes Ax = y, and we will call this the minimal
solution vector or, more simply, the minimal vector for Ax = y.
When referring to the minimization of Ax = y, we may use the more

.

To begin this discussion, we prove a well-known theorem which

suggestive terminology of the minimization of HAx -y

dates back to the time of Gauss.

Theorem III.1 The following conditions on a vector X are equivalent:

1) x minimizes Ax=y.

2) Ax = proj (y; R(A)).

3) X satisfies A'Ax = A'y.
Proof: We shall prove 1)§¥92) and then 2)¢EPp3). We need the fol-
lowing lemmas:

Lemma I1I.1., ILet A be an n X m matrix then

a) N(A)‘L= R(AY)

b) N(A') = R(A)'L

18




Proof of Lemma III.1l, Since a) follows from b) and the facts that

1.4
(R(A) ) = R(A), and (A')' = A, it is sufficient to prove b).
N _
Let x ¢ N(A'). We show that x ¢ R(A) . That is, we must

show if t ¢ R(A), (x,t) = 0. We know that there is a y so that
t = Ay. Thus (x,t) i(x,Ay) =y'A'x = y'0 = 0.
Hence N(A')CR(A)
Now we show that if x £ N(A'), then the vector y = A{A'x)eR(A),
and (y, x) # 0. Indeed, if A'x £ 0, then (A'x,A'x) £ 0. But

(Ax, A'x) = x"AA'x = x'y = (y,x).

Hence (y,x) # O. Q.E.D.

Lemma III.2, Let A be n x m, and Ax = y where x is an m-vector,

v an n-vector. Then

oo ing ey I = Uy |

where

A4
y1 = proj (y; R(A) ).

Proof of lemms III.2. Since y is en n-vector, we may write

Y = Yo + y1 with yo e R{A), y1 ¢ R(A)

Then

Ny I = aeyo ff + Jon I 2l I

19




Since yg € R(A), we conclude that

o = “Y1“2 Q.E.D.

Corollary III.1 |lAx-y|® = @ if and only if

Ax = yo = proj (y; R(A).

Now to the proof of theorem III.1: 1)@&2). This follows easily
from Corollary III.1.

2) =»3). Suppose 2) is true. Let Ax = yo then

Aly = Alyg + A'n1 = A'yo

4 -
since y1 € R(A) = N(A'), Thus Aly = A'Axgnd 3) is true.

Conversely, let X be such that A'Ax = A'y then

AX € R(A) and yo € R(A)

=> AX- yo € R(4).

But

0 =A'AX - A'y = A'AX - A'yo = A' (AX - yo)
SO

AX - yo € N(A') = R(A)‘L

:A;-yo='5$A;=yo and hence

X minimizes “,Ax-yl . Q.E.D.

The advantage of this result is that it enables us to
translate the problem of minimizing HAx-yH to the easier problem
of finding a solution to the equation A'Ax = A'y. Such a
solution always exists since A'y € R(A') = R(A'A). Later we

shall be interested in finding the unique solution x5 of A'Ax = A'y

20



which has smallest norm, i.e., the minimal vector for Ax =y,

but now we content ourselves with finding any x such that A'Ax = A'y.
According to what has been said (Corollary II.2), a solution

to A'Ax = A'y is given by X = (A'A)8A'y where (A'A)® is any g.1i.

of A'A. Since the equations A'Ax = A'y are called the normal

equations for Ax = y, we are led to the following.

Definition III.,2. If A is an n x m matrix, then the m x n matrix

A" = (A'8)Ba" vhere (A'A)8 is eny g.i. of A'A is called a
normalized generalized inverse of A,

This structure was first studied by Zelen, who used the term
weak generalized inverse.

We observe first that AAMA = A, so A" is a g.1. of A, In
fact, Ap satisfies many more properties which we shall study
later, and which we shall use to give an equivalent definition of

n

A7, Let us note, in this terminology, that the vector X = Any

minimizes the equation Ax = y where AP is any normalized g.i. of A.

21




IV. PSEUDO-INVERSES

Let us study the normalized g.i. Ap. We will show that if

A" is a normalized g.i. with the property that (A"A)' = APA,

then the minimal vector of Ax = y is xp = Any. But, before we

do this,

of view,

let us look at things from a slightly different point

The following lemma and corollary which are due to Bose,

are found in the paper by Rohde (Ref. 25).

Lemna IV.1.

Let X' be a p x n matrix. There exists a p x n matrix Y

such that
1) (XX)Y = X!
2) XY is unique in the sense that if X'X¥; = X'

3)
L)

Proof

1) To prove the existence of Y, all we need observe is that every

and X'XYs = X! XY; = XYo.

XY

(xy)'

(XY)2 = XY.

colum of X' is in the column space of X'X. Hence, there is a Y

such that X'XY = X°*,

2) Suppose X'XY; = X' and X'XY¥> = X'. We will show that for

i=1, ..

.y n, the ith columns of XY, and XY> are equal.

Let Y1i be the ith column of Y;, and Yz; be the ith column

of Yg.

22



Then X'kYy4 = X'XYzi
D XX (Y31 - ¥24) =0

2 (Yyg = ¥2;)'X'X (Va3 - ¥oq) =0

=» the inner product (X(Y;; - Yoi), X(Yiy - Y¥o3)) = 0.
=P XY¥;; = X Yp;. Q.E.D.
3)  (XY)' = Y'X' = YUX'Y) = (Y'X'X)Y
= (Y)Y = (X') 'Y = XY.
L)  (XY)® = (XY) {XY) = (XY)'XY
=YX'XY =YX' = (XY)' = XY. Q.E.D.

Corollary IV.1l

The matrix A(A'A)EA') where (A'A)% is any g.i. of A'A,
is uniquely determined, symmetric and idempotent.
Proot

The equation A'AX = A' has a solution given by X = (A'A)8ar,
Hence AX = A(A'A)®A' has the desired properties, by lemma IV.1,

Theorem IV.1.(Rohde)

The matrix A" is a normalized g.i. of A if and only if A"
satisfies the following:
5)  AACA = A
5)  AMaa" = A"
7 (aa?)t = an,
Proot

Necessity.

If A" is an n.g.i. of A, there is a matrix (A'A)® such that

AM = (aa)8ar,

23




n
Then AA A = A(A'A)gA'A = A, since (A'A)8AtA is a right identity
for A'A, and hence is a right identity for A.

Similarly,
A"AA? = (ata)Bara (an)Bar = (an)Bar,

Thus properties 5) and &) are satisfied. DProperty 7) is satisfied
by Corolliary IV.1.
Sufficiency.
From properties 6) and 7), we have that
n n
row space A & row 3pace AA

column space AAR & column space A

]

row space A',
Thus, there is & matrix X such that A" = XA'. We show that X is
a g.i., of A'A,

Indeed, A'AXA'A = A'AA"A = A'A by property 5) Q.E.D.

The characterization of normalized g.i.'s given in the above
theorem is what is usually used to define these structures. Pur-
suing this type of reasoning, let us, for an arbitrary n x m matrix
A, consider the following equations:

8) AXA = A

9) XAX

it
»

10) (AX)' = AX

XA

1

11) (xA):

We have shown that 8), 9), 10) have a solution for any A, and we

shall presently show that in fact these four equations have a
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unique solution for any A, But, before we do this, let us just
mention that in the literature so far there have been four types
of g.i.'s studied. These are obtained as follows:

For an arbitrary matrix A, a matrix X is called

a generalized inverse (g-inverse) if it
satisfies 8).

a reflexive generalized inverse (r-inverse)
if it satisfies 8), 9).

a normalized generalized inverse (n-inverse)
if it satisfies 8), 9), and 10).

a pseudo-inverse (p-inverse) if it satisfies
8), 9), 10), and 11).

Our maim purpose is the study of the p-inverse which has the
particularly nice property that it is unique. However, to facili-
tate some later proofs, we Bhall give the following two results due
to Rohde, who studied in some detail the properties of the four
types of g.i.'s (Ref. 25).

Theorem IV.2.

For any n x m matrix A, and any g.i. A8 of A, rank A > rank A,
and rank APA = rank AA® = rank A,
Proof: By theorem I.2.

rk A S vk ABA S rk A8;

further,

rkA > rk AA® = rk AASA = rk A,

and

rk A > rk A8A > rk AA®A = vk A. Q.E.D.
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Theorem Iv.3

The matrix A® is an r-inverse of A if and only if rk A8 - 1k A,
Proof:

1r A8 is an r-inverse of A, then A is a g.i. of A8, Hence

rk A s vk A% < rk A
rk A = rk A8,
Now suppose rk A8 - rk A.

By Theorem II.2 and the remaXks which follow it, we know that

I ©
A8 - QBgP where PAQ = B = [ _? _ ]
I, U 0
and BE - [Vr W] , where U, V, W are arbitrary

matrices of appropriate dimensions.

We have that rk A® = rk A = rk B and rk A% = rk B® since
miltiplication by non-singular matrices preserves rank.
Thus rk B = rk BS,

If we show that this implies that B®BBE = B®, we have

2808 - qBfpp~1q®P - QBEBE®P

- QBgP - Ag
which is our desired result.

Thus we must show BEBBS = BE,

26



We have

. I, 0 I, Uq (I, U
wen [50 ) [P ]
VoI v wlls 1

I U I -U -
e [ vd [5 o]
LO W-VU 0 I
n-r
-I 0 - I 0
=k | _© Jzxx| s
-0 W-VU 0 O
=rk B
Hence,
rk B® = rk B=> W-VU = 0
N g [IrU:I
BW=VWDB = | w
Thus -
5%8ES - r U:] —If. 8— M i U]
= Lv wu Lo od Lv w
I 0 _ I U_ I, U
= BJ Lv wi~TLv VU:I
=8® Q.E.D.

Henceforth in this paper we shall be concerned with pseudo-inverses.
We begin by giving the basic theorem of Penrose (Ref. 20) concerning

the existence and uniqueness of p-inverses,
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Theorem IV.3,

For any n x m matrix A, there is a unique m x n matrix A+,
called the pseudo-inverse (p-inverse) of A, satisfying:

12)  AATA=A

13)  AtaaT = At

1) (AATY' = An

]
=]
b=

15)  (a'R)°
Proof
We first note that AA' = 048 A = 0 and then that
16) BAA' = CAA' =p BA = CA
and
A'AC B AB

17) A'AB AC

L]
1

These follow respectively from

18) (BAA' - CAA') (B-C)' = (BA - CA) (BA - CA)'

and

19) (B -C)'" (A'AB - A'AC) = (AB - AC)' (AB - AC)
Now, since row space AA' = row space A', there is a matrix W
such that WAA' = A', Similarly, since column space A' = column

space A'A, there is a matrix Y such that A'AY = A',

‘Let us define AT = wWay.

Since AWAA'! = AA' and A'AYA 2 A'A, Ve have that AWA = A
and AYA = A. Thus AATA = AWAYA = AYA = A and A*AAT = WAYAWAY =
WAWAY = WAY = A*. Hence 12) and 13) are satisfied.

Now,

(AY)' = Y'A' = Y'A'AY = (AY)'AY

which shows that (AY)' is symmetric and hence AY = (AY)'.
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Similarly, WA = (WA)'.

Thus
+ +
AN = AWAY = AY = (AY)' = (AA7)?®
and .
+ +
ATA = WAYA = WA = (WA)' =(A"A)!
Hence A" = WAY is a p-inverse of A,
Uniqueness:

Let us note that for any p-inverse A" of A, rk At = rk A,
Further, we have
+ +
row space A €row space AA

column space AA+<: column space A,

row space A'

=p row space AY = row space A',

Similarly, column space A" = column space A', Thus
A'ARY = At ana ATAA' = AT,
Now, let G and X be p-inverses of A,

Then

GAA' = A' = GAX

X and

A'AX

A'»GAXX =G Q.E.D.
The following properties of the p-inverse were obtained by
Penrose.

Theorem IV.L.

Let A be a matrix, Then
20) (ANt = a
21) (a0t =@a%):

+ -1

22) A" = A™" if A is non-singular
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23) ()" = X+A+, A a real number,

+ Oif A= 0
where )\ =
1
= if .
Y A#£0

oh) (aa)t = atate

25) If U and V are orthogonal matrices, then
(Uav)* = vatur,

26) If A =7SA, where ALA'=Qand A, 'A, =0
i i3 i 07

for i # j, then At = ¥ Ai+.
i

o7y AT = (aa)tar = ar(aan)”
28) If A is symmetric and PA P' = D = diag {)\1,..,)\11,0,..0},

then A" = PD'P' where D' = diag A3t 0,..,00.

29) A*A, ant I-ATA, I-AAT are all symmetric, indempotent
matrices.

30) If A is normal, i.e. AA' = A'A, then AA' = AYA and
(A™* = (A+)m for m a positive integer.

31) A, A'A, AT, ATA, AAT a1l have rank equal to Trace A'A.
Froof

We shall sketch parts of the proof.
Property 2k)

We have AaATA1A1A

= A'ATTA'A (See proof of Theorem IV.3.).

= A'A, The other properties are similar,
Property 27)

We have A(A'A)TA'A = A since (A'A)" A'A is a right identity

for A'A, and hence is a right identity for A.
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Property 29)

Suppose AA' = A'A., Then

AT = (aat)r = ATar = pataTan
= (aav)Taar = (ata)t ata = aTa,
Property 30)

We know that rk A = rk A'A

rk A+ by Theorems I.3 and IV.3,

Now

rk A = rk AATA < vk ATA = rk A

so rk A = rk AA, and similarly rk A = vk AAT. Since A'A is

symmetric and indempotent, there is an orthogonal matrix P such that
PATAP! = diag {1, 1, .., 1, O, .., O}.
Then

tr AYA = tr PATAP' = rk ATA. Q.E.D.

1

We observe that, in general, (AB)'Y # B'A*. However, Cline

(Ref. 5) has shown that we may find matrices B, and A; such that

AB = AR, and (aB)Y = B,'A,T

In fact By = A'AB, and A; = AByB,".

Now that we have the p-inverse, let us return to our problem of
finding the minimal solution vector of a matrix equation Ax = y
where A is n x m. Recall that we have shown that a vector xg

minimizes the equation Ax = y if and only if A'Axg = A'y, We have

also shown that A'Axg = A'y if and only if (A'A)EA'y = A'y, and that
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if xo = (A'A)BA'y, then xo minimizes Ax = y, where (A'A)® is an
arbitrary g.i. of A'A.

We thus know that if x, = A"y, for some n-inverse A" of A then
Xo minimizes AX = y. We now ask what further conditions we must
put on Xpo so that it will be the minimal vector for Ax = y.
We shall show presently that a necessary and sufficient condition for
Xo to be the minimal vector is that it minimize Ax = y and belong to
R(A'). We will also show that there is only one minimel vector for
Ax = y. For the time being, let us assume we know these results.
We then could write any minimizing vector X as ;cl + Xo where Xy ¢ R(AT)

J’: N(A)), we would

and Xz ¢ R(A')Vl*. Then, since Ax> = 0, (R(A"}
have that AX = y, and x; ¢ R(A'). Thus we would have that AX = Ax.,
which would mean that xj also minimized Ax = y, and x; ¢ R(A'). But
we know that we can obtain a minimizing vector x by setting X = Any
where A" is any n-inverse of A. From what we have said, if Any were
in R(AY), Any would be precisely the minimal vector for Ax = y.
Now 1t seems reasonable to ask just what restrict:}ons on An

we need to insure that A"y ¢ R(A'). This we state as the following
theorem which is another form of a result stated by Albert (Ref. 2).

Theorem IV.5.

Let A be an n x m matrix; A" an n-inverse of A, Then if (A™A)"
= A"A, i.e., if A" is the p-inverse of A, Ay = A¥y ¢ R(A') for all
y. Conversely,if an n-inverse An is such that Any ¢ R(A'") for all y,
then A" = A",

Proof

1f A" = AT, then A'ye R(A") = R(AY)

Conversely, if Any ¢ R(A') for all y, then we must show that A" - At

In other words, we must show that
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A" i5 the only matrix M satisfying:

32) row space M < row space A',

33) column space M & column space A',

34) AM is a left identity for A.

35) MA is a right identity for A.
We first prove that AA+ is the only left identity for A with rows
in the row space of A', and ATA is the only right identity for A
with columns in the column space of A'.

Indeed, suppose that B is a left identity of A of the form X A'.

Then
XA'A - AATA = 0
=> XA'A - A(A'A)TA'A = 0 by 27)
= xA' = A(A'A)TA' by 16) and the fact that (A')' = A.
Thus
B=XA' = A",

Similarly, ATA is the only right identity for A with columns
in the column space of A',
Now, to complete the proof of Theorem IV.5., suppose that A;
is any matrix satisfying 32) - 35).
Then \
+

Ay = Aaat = atant = AT, QUE.D.

The basic idea of the last proof is found in a paper by
Greville (Ref. 13).

We now prove the theorem which will pick up all the loose ends

we have left,

Theorem IV.6

36) A minimizing vector Xo for the matrix equation Ax = y
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is the minimal vector for Ax = y if and only if xo e R(A').

37) The minimal vector xo is unique, and is given by xo = A'y.
Proof

Suppose Xo is the minimal vector for Ax = y. Then X, has the
unique decomposition X5 = X3 + Xp where X; = proj (xo; R(A')) and
Xz = proj (xg ; R(A')-L ).

Since xz ¢ R(A')_L = N(A), we have by Theorem III.1l, Axg = Ax,

= proj (y; R(A)). Thus x; also minimizes Ax = y. But
ol = Pxal® + Il = ol

= x| = [k1F>x2 =0 x0 = xa
Hence
Xo ¢ R(AY).
Conversely, let xg be a minimizing vector for Ax = y which is in the
range of A', Let X be any minimizing vector for Ax = y. We shall show

that |xI! > |xoll, and, in fact = proj (x; R(A')). Write X = t7 + to
! 1ol » Xo

with t; ¢ RI(A"), to ¢ R(A')"' = N(A).
Then
Ax = Aty = proj {y; R(A)) = Axg
=2 X5 - t1 ¢ N(A) = R(A')“L
But

Xo - tl € R(A')#Xo = t]_.

Now for the uniqueness, if xg, to are two minimal vectors for Ax = y,

the x5 = proj (tg; R(A')) = tg.




Since ATy minimizes Ax = y, and AYy e R(A'), A"y is the minimal
vector for Ax = y. Q.E.D.
We shall summarize our results in the following theorems.

Theorem IV.7

Iet A be an n x m matrix with real entries. Let X be an

m-vector; y, an n-vector; ¢ = igf H Ax « y||. Then the minimal vector
Xg for Ax = y is Xp = A+y where A' is the p-inverse of A. This
vector satisfies

38) laxo - yll = @, end if X is such that X # X and

8% - yll = @, then |l > |koll.

39) Xo € R(A').

40) hxg = proj (y; R{A)).

These results are a slight reformulation of those found in
Alvert (Ref. 2). The following theorem, which is to be found in
Albert, summarizes the main spplications of the p-inverse.

Theorem IV.8

41) Let A be an n x m matrix with column vectors Al,...,Am.
Then, if L{A;, ..., Am) = R(A) is the space spanned by these
vectors, yo = proj (y; LlA, ..., Am)) = AA+y.

42) v =proj (y; N(A")) = (I-an")y

43) ¥ minimizes |[Ax-y|| if and only if there is a z such that
x = Aty + (1-a"0)z.
In closing this section, we observe that there are at least

three alternative methods of defining the p-inverse A" of a matrix A.

The first two methods we have already mentioned, and we state now as
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Theorem IV.9Q.

L) The p-inverse A" of A is the unique matrix such that
for any m-vector y, Ay ¢R(A'), and A"y minimizes Ax = y;

45) The p-inverse A" is the unique matrix satisfying
32) - 35).

Albert (Ref. 2) uses another equivalent definition which we
give as

Theorem IV.10.

For any n x m matrix A,

At = 1im (A'A 4 € I) 1A

€70

lim At(AA' + o I)71
€0

where A'A + €I will always be invertible if |€' is less than the

absolute value of the smallest non-zero characteristic value of A'A,



V. COMPUTATION OF THE PSEUDO-INVERSE

Having discussed at length the geometric applications of
the p-inverse, it seems desirable to have at hand an ecoﬁomical
method for its computation. In view of property 27) of section IV,
it suffices to find the p-inverse of matrices of the form A'A.
The following theorem shows that it suffices, in fact, to find an
arbitrary g.i. of a matrix of the form A'A.

Theorem V.1.

If A is symmetric, then AT = A[(A2)8ATP where (42)® is an
arbitrary g.i. of AZ. |
This is a straightforward application of Penrose's method for

the computation of the p-inverse.

2
We solve 1) WA A and

2) A®Y A.

A solution of 1) is Wy A(A2)8 and a solution of 2) is
Y, = (a2)Ea.
Then

A(A2)8a(n2)8n

=
i

Wo A Yo

Al(A®)812, Q.E.D.

1]

Now suppose A = H'H, Then to find A+, all we need to find is (Az)g.
Since A% = (H'H) (H'H) = (H'H)'(H'H), we have reduced the problem
to that of finding the g.i. of a matrix of the form H'H.

Let us remark that in the proof of the existence of a g.i. A8
of an arbitrary matrix, we showed how to compute one, Our method
involved a row reduction, i.e. pre-multiplication by & non-singular

matrix P, and a column reduction, i.e. post multiplication by a

non-singular matrix Q.
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Rao has shown (Ref. 23) that when A is of the form H'H, we may
row-reduce A by pre-multiplication by a non-singular matrix P,
and that P is a g.i. of A, i.e. APA = A. Applying this £o the
above theorem, we see that finding (A'2)€ involves only ordinary

row reduction., To prove Rao's result we need some additional terminology.

We say that the n x n matrix A has the row-reduced zero
property (A has r.r.z.p.) if its row reduced echelon form has the
property that when its ith diagonal element is zero, its ith row
is composed only of zeros.

Lemma V.1. (Rao)

Let A be an n x n matrix with r.r.z.p. Let R be its row
reduced echelon form. Let P be a non-singular matrix such that
PA = R. Then

3) R is idempotent; i.e. R® = R.

4) AR =R

5) APA = A, and hence P is a g.i. of A.

6) A necessary and sufficient condition that Ax = y

be consistent is that if the r;th, rzth, ... coordinates
of Py must be null.

7) A general solution of Ax = y is Py + (I - PA)z

where z is arbitrary.
Proof
3) Let R = [rij] Let B2 =R‘R =C = [c,.]. Then

n +d

2
€153 = L Tix Tk
k=1

We have three cases
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Case 1: 1 >

Then 3 n
¢33 Z Tik Tx3 ¥ Z F11 kg
k=1 k=j+1
= O = r. .
iJ
Case 2: Let 1 = J be fixed., Then either r,, =1l or r.. = 0.

Jd JJ
If r,; =1, then r;, = 0 for L # 3, i.e. for all other entries in

the jth column of R.

Then the jth column of C is the same as the jth column of R.
it rij = 0, the jth row of R is composed only of zeros. Hence, the
same is true of the jth row of C.

Thus r.. =c,, for all i = j.

ij ij

Case 3: Now let T3 be fixed where i < j. Then 7y g #0
if and only if r.,. =1 and r,. = 0. This implies that c,, = r. .

ii JJ ij iJj.
Thus R = R.

-1

4) PA=R=3A =P R=P!RR=AR.

5) We have APA = AR A,

6) See Hoffman and Kunze (Ref. 17), Chapter 1.
7) This follows from Corollary II.2. Q.E.D.

Theorem V.2, (Rohde)

If A = H'H where H is any matrix, then A has the row reduced
zero property and hence the results of lemma V.1l. are true for A.
Proof

We prove this by induction on the dimension of A,

Let A = H'H be an n x n matrix, and assume that the result is
true for all matrices B of the form B = S'S where dimensiorn B <n,
We may begin to row reduce A. Suppose that we have completed row
reduction of the first i-1 rows, and we wish to continue with the
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reduction of the iEE row. Let us see what we have done.

We started with A which we can write as follows:

Hl ! H]_ 'Hl H]_ 'Xi
A = X! [HinHZ] = x5 'Hy xi "x4
Hg ' Hg 'Hl Hg 'Xi

Hs 'Hp
Xi 'HZ
H-'"Ho

where Hy; is the matrix of the first i-1 columns of A, X5 is the

ith column of A, and H- is the matrix of the remaining columns of A.

We first observe that the {i-1) x (i-1) matrix H,'H; satisfies
our inductive hypothesis. Thus, if we row reducé Hy'H,, we do this
by pre-multiplication by a non-singular matrix (Hl'Hl)g. With this

comment it should be clear that the non-singular matrix which has

row reduced the first i-l rows of A is

™ 7

(2,'H,)8 0 0
0 1 0
0 0 I

- e

Now that we wish to work with the ith row of A, let us do this

in detail. We have put A in the form

(H,'H)® o © Hy'Hy Hi'xy H
0 1 0] xq 'Hy X4 "%4 X4
0 I Ho'Hy  Ha'xy  Ho

I |

= Rl (Hl 'Hl)gﬂg 'Xi (Hl 'Hl)gﬁl 'Hg

1 | PR . !
x; 'Hy x5 "% x5 'Hz

Ho 'Hl Ho 'Xi Ho 'Hg

where R, is the row reduced form of Hy'H,.

ko

‘Ho
'Ho
"H,



To reduce the ith row of this matrix, we pre-multiply by

I 0 0
"‘Xi 'Hl l O
L(') 0 I
to obtain
g g CE—
R, (Hy'Hy)®Hy "4 (Hq'H,)®H, 'Ho
0 £ &1
Hg ‘Hl H2 'Xi H2 'Hg
L -
where
fi = Xi 'Xi - Xi 'Hl(Hl 'Hl)ng 'Xi
and

g. = X-: 'Hg - Xi'Hl(Hl'Hl)gH]_'Hé

=
[e]
=
E
(0]
o
0n
:
[¢)]
H
e
Ii

0, and we wish to show that g, = 0. We have that

- — ! - t g t
0=f =x;'[I-H(H"H)"H"]x,.

By Corollary IV.1., Hl(Hl'Hl)ng' is symmetric and idempotent, hence,

SO is
I-Hq(Hq 'Hq)®H !
Thus
0 = £;= x, "(I-Hy(H 'Hy)8H, ") (I-Hl'(Hl'Hl)gﬁl")xi
2 x, ' (I-H (H,'H,)%H,') = 0
= x, "(I-Hy(Hy 'Hy)®Hy DHz = 0
=0 = x; "Ho-x; 'Hy(Hy "Hy ) 5H; H = g;
Since this is true for i < n, A has r.r.z.p. Q.E.D.
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Let us recapitulate briefly. To find a g.i. of the

n x n matrix A = H'H, we merely adjoin In to the right of A to get

falz,]
Then we row reduce this matrix and get
[a8a |87

To consolidate our computational method, we have
Theorem V. 3.

Iet A be an arbitrary n x m matrix. Then

At = (ara)tar = ar(aan)t

and (A'A)" = a'a [((a'a)2)8arale

Thus AT = A'A [((a'A)2)8ataT2A0

and
a similar formula holds involving AA'., This method involves six
matrix multiplications and one row reduction.

So far, the simplest method we have seen for finding the g.1i.
of an arbitrary matrix involves a row reduction, colummn reduction,
and two matrix multiplications (Theorem II.2.). The following
method, due to Frame (Ref. 11), shows that we may find a g.i. of
an n x m matrix A by little more than ordinary row reduction.
Definition

8) The distinguished columns of the n x m matrix A of rank s,
are those linearly independent columms which are obtained by
starting at the first column on the left, moving to the right, and
deleting any column which is a linear combination of the columns
preceding 1t.

9) A is said to have the rank factorization A = BC where B

is the submatrix of the distinguished columns of A in their natural
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order, and C is the submatrix of the top s rows of the row reduced
echelon form R of A.

We note that rk A = rk B = rk C, and that every matrix has a
unique rank factorization.

Now we keep A an n x m matrix of rank s. Let L be an n x n
non-singular matrix such that LA = R, where R is the row reduced
echelon form of A. Let Lj be the submatrix of the top s rows of L,
and C be the submatrix of the top s rows of R. Let Lo be the sub-
matrix of the remaining rows of R. The other rows of C are composed
only of zeros. The distinguished columns of C are those of Is' If
we let V be the submatrix of the other columns of C in their original
order, then, writing the s x m partitioned matrix [IS|V] , we see
that we may interchange columms in [IS‘V] to get back to C. Letting
P be the matrix obtained by interchanging the appropriate columns of

Py
I, we have C = [I,|V]P. Now, we may write P = |5 | where the s x m

P>
matrix P; consists of the distinguished columns of C, and the (m - s)
x m matrix P consists of the other rows of the identity. Because of

the way we have chosen P = [%l' we have that
>

¢ = [1,|V] [—%ﬂ = Py + VPs
and
P"l =P = [P'|P2"]
We assert that the n x s matrix B = AP;' consists exactly of the
distinguished columns of A. Let us see why this is so. The m x s
matrix Py1' has as its columns some of the columns of Im. Since the

non-zero columns of Py are the distinguished columns of C, they occur

in the same positions as the distinguished columns of A.
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‘That is, the jth column of P is non-zero if and only if the jth
column of A is a distinguished column of A. Now the 1,jth entry
of Py is non-zero if and only if the ith row of P; is ej' =
[0,..,0,1;,0,..0]. When we multiply AR!, the ith colum of this
product is the jthcolumn of A, since the ith column of this product
is just A times the ith column of Py', which is [o..o,lj,o..o]'.

Using the fact that B = AP;' is the matrix of the s distinguished
columns of A, we see that A has the rank factorization A = BC =
APy ' A,

We state this formally with another observation as

Theorem V..

Let A be an n X m matrix of rank s, Let L, C, Iy, Lg, P, P2
be defined as above. Then the matrix A' = P;'L; is a reflexive g.i.
of A; i.e. AT satisfies AATA = A, and ATAAT = AT,
Proof

By the above argument, we conclude that AT satisfies AATA = A.
Further, by the structure of P,', we see that P; 'Ly has as its
non-zero rows exactly the rows of Iy, which are linearly independent.
Hence rk Py 'Ly =rk I, = s = rk A. Thus, by Theorem IV.3., P;'I4
is an r-inverse of A. Q.E.D.

The following corollary is also due to Frame.

Corollary V.1,

Let the equation Ax = y be consistent where A is an n x m matrix

of rk s. Then the most general solution is given by

x =D 'L]_y + (Pz' - P 'V)Z

where z is an arbitrary (m-s)-vector.



k5

proot
All we need prove is that every vector (1-A82)z, can be written
as (Po' - P; '"W)z. Since A(I-ABA) = 0, we have that C(I-A%A) = o.
Let us then determine the form of those matrices S such that

CS = 0. We have that C = fIr\V]P. Hence the mx(m-s) matrix Aq =

P! f '¥ ] is such that CAg = O. We then have that the columns
m-s

of Ao must belong to N(C). But rk A; = m-s = dim N(C) since

i

dim N(C) + rk C = m. Thus, columm space Ay = N(C). Now, since
column space (I - A8p) € N(C) = colum space Ag, there is an (m-s)
vector z such that (I-ABAYzy = Agz = (Pa' - Py' V)z. Q.E.D.

To help clarify the ideas of Frame's method, we present the

following example.

Consider the system of equations

2Xq + Uxo + X3 + Uxg + Uxs = -1
X1 + 21(2 + 2}{4 + Xg = 0
X3 + Xg = 1
2x71 + bxo + 2xa + bxy + 55 = O
which we write as Ax = Yy,
- - - -
2 % 1 4 b <] [
1 2 0 2 1 Xo 0
0 0O 1 0 1 X3 - 1
[2 4 2 4 5 X4 0
X5
Writing [Aly|I4] gives
2 4 1 4 b -1 1 0 0 0]
i1 2 0 2 1 0] 0o 1 0 O




Now,

1

-1 3 1 0
-1 2 2 0
1-2-1 0
1 0-1

-2
3
-2
0

t the system is consistent.

1 2 0 2 0
0 0 1 0 O
0 0 0 0 1

_O 0 0 0 O

Row reduction yields

}
oNeoNeoN Ne

O OO0
Qoo od _n/_oo
[oNeoN L NoNe] OO
| D—
lOOOO—
]l N QOO OO
o I n 10204 [
AN OO 4 O
— e - noaag
eRoNT| OO
~ O O+ A< O OO
oNoNel INeNL] 1 1 I
OO lncﬂu [ UR— —
O~ 0O OO ] il
OO MNMAQ
1 = =
OO0t HO [} -
[\NeNe] 1....I__l - DH
~
oo ~Ho0ool oo { ol _
I ] " -
- 3] '}
© P = < (2}

SO
Hence
and
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Hence the most general solution to Ax = y 18

-1 31 0 -1 -2 =2
0 0 0O 0 1 0
x =112 20 A o o [t;]
0O 0 0O 0 0o 1 to
l1-2-1 0 0 Q_ i
ty . .
where z = [tz] is arbitrary.

We should comment here that although we may completely analyze
the system of linear equations Ax = Yy through the use of g.i.'s,
this is often not the best way of doing so. There is a well-
established method for determining whether or not the system
Ax = y is consistent. This method (Ref. 17) consists of adjoining
the column vector y to the matrix A to obtain [Aly], and row-
reducing this "augmented" matrix. The system Ax = y will be con-
sistent if &nd only if rk [Aly] = rk A, and when it is consistent,
we may find a general solution as is shown in (Ref. 17). The case
where the g.i.'s are of practical use is when the system Ax = y is
inconsistent. We then work with A'Ax = A'y, and we may use Rao's
method for finding the g.i. of A'A or a g.i. of (A'A)2. We may

then easily compute A+,
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NOTATION

§ implies

&= is equivalent to

€ belongs to, or is a member of
= is a subset of

U
n

set union

set intersection

{Xi‘}i the collection {Xl, .oy Xn} .

g.i. generalized inverse

A, B, X, Y capital letters to denote matrices
In the nxn identity matrix

X, ¥, 2 small letters at end of alphabet

denote vectors.

oy &, b, C small letters at beginning of
" alphabet or small greek letters
denote real numbers,

proj (y; W) the orthogonal projection of the
vector y on the subspace W.

the inner product of the vector x

(x, ¥)
with the vector y.
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